最新动态
丁克寿命短?关于衰老与死亡的种种谜解
2024-11-26 10:52

从埃及金字塔到秦始皇陵,从炼丹采补到人体冷冻,古往今来有多少人想长寿,想永生。

丁克寿命短?关于衰老与死亡的种种谜解

我们人类,包括所有生命,为什么会衰老,为什么会有生死?

虽然这似乎是“不言自明”的真理,但其实只是经验归纳,我们从没在“科学层面”搞清楚生命为什么会有衰老和死亡。

下面这篇鸿文将会带你深潜这个终极问题,顺便解答一些有趣的疑惑:逆境vs顺境,胖子vs瘦子,高个vs矮个,生孩子vs丁克……哪种让你更长寿?

一 四种理论解释:生物必须死

人和许多动物都有生老病死的过程,狗和猫就是我们熟悉的例子。就连单细胞的生物也会衰老。例如酿酒酵母通过出芽进行繁殖,“母亲”细胞在出芽25次左右后,就失去繁殖能力,显示出衰老迹象,细胞变大,细胞膜上“疤痕”增加,细胞核外的环状DNA积累,最后死亡。因此衰老是生物界中一个相当普遍的现象。

但是我们又想减缓甚至阻止衰老,以达到延长寿命,甚至永葆青春的目的。为此人类对衰老现象进行了大量的研究,得到了许多实验结果。这些结果表明,衰老现象总的来说与身体维护和修复能力的衰减有关,这种衰减使得各种生物大分子所受到的损伤因不能被完全修复而逐渐积累,导致各种生理功能下降,生存能力变弱,疾病发生率增加。

这些研究结果告诉我们生物是“如何”衰老的,但是我们并不满足于知道生物是如何衰老的,还想知道生物“为什么”会衰老。我们在青春期之前,是看不出衰老迹象的,说明身体有能力把自己保持在青春状态。在青春期之后,我们仍然拥有同样的基因,为什么就不能继续把身体保持在青春状态呢?既然衰老与生物维护和修复能力的下降有关,继续保有身体的这些能力,不就能避免衰老吗?生物的演化过程为什么要让这些能力下降呢?

在这个问题上,美国科学家George Williams (1926-2010)的说法颇有代表性。他质疑道:“令人惊异的是,复杂的多细胞生物,在构建成显然是神奇的结构之后,竟然不能解决一个简单得多的问题,即维持已经建成的结构。”这就好像有能力建造一所豪宅,却没有能力维护它一样,是有点说不通,因为“修理总比把身体扔掉,重新造一个要更合算”。是演化过程有什么缺陷,无法阻止衰老的发生,还是衰老过程有某种必要的功能,以致演化过程要把它发展出来并且保留它呢?

为了解释为什么生物不能长期或者永久维持自己的健康状态,科学家们可谓绞尽脑汁,提出了各种假说,其中主要有Medawar的“外部力量说”、Williams的“基因多重功能说”和Kirkwood的“体细胞和生殖细胞之间的资源分配说”。

外部力量说

英国科学家Peter Medawar(1915-1987)认为,动物的死亡主要是由外部因素引起的,所以动物也不需要发展出对抗衰老的机制,因为动物,尤其是野生动物在有机会衰老之前,就已经基本上死光了。如果有些个体活到一定年龄还没有因为外部原因而死亡,也是会衰老的,因为在这个年龄,动物已经没有防止衰老的机制了。

Peter Medawar

Medawar提出的外部条件决定动物是否衰老的说法是有道理的,只是外部条件除了被捕食,疾病和事故外,还有一个重要的因素就是资源,我们会在后面再谈这个问题。

但是Medawar认为的动物在野外极少有机会衰老,却不完全符合事实。2013年,英国科学家汇集了340项对动物野外生活情形的研究,发现至少有175种动物在野外表现出衰老现象。所以许多动物并不是一直保持青春状态,直到因外部因素导致的死亡,而是在那之前就开始衰老了。

在实验室条件下饲养的小鼠,吃喝无忧,没有被捕食的危险,感染疾病的几率很低,更不太可能因为意外事故而死亡,但是仍然会进入衰老阶段,最后多死于癌症,也就是主要死于内部原因。而且实验室饲养的小鼠的寿命只比在野外的小鼠稍长,在两年左右。这说明小鼠已经把外部条件所限制的寿命长度以某种方式“记录”下来,变成自己生活的“程序”,在引起死亡的外部原因被基本排除后,小鼠到时仍然会衰老和死亡,而且由于自身原因(衰老)而决定的寿命和由外部因素决定的寿命基本上符合。

拮抗基因多效性说

前面对衰老现象的存在提出疑问的George Williams,却不谈外部因素,而是从生物内部来寻找衰老的原因。既然动物在生命的早期和晚期都拥有同样的基因,衰老可能就是由一些具有多重功能的基因引起的,这些基因的功能在生命的早期对身体有利,而到生命的晚期则对身体有害,叫做“拮抗基因多效性”。例如性激素在青春期对生物的繁殖有利,但是在繁殖期过后又能够诱发卵巢癌(主要由雌激素诱发)和前列腺癌(主要由雄性激素诱发)。生长激素在生物的生长期有非常重要的正面作用,但是在生育期之后却促进衰老。

Williams的这个说法也是有一定道理的。我们在后文中将加以说明。同样的信号通路在年轻时对生长有促进作用,但是在生命后期却缩短生物的寿命。

资源分配说

英国科学家Thomas Kirkwood (1951- )则认为,衰老是生殖和体细胞维护之间资源分配状况的结果。生殖细胞的任务是繁殖后代,是需要保持在高度完美的状态的,所需的资源也必须有保证;而体细胞是可以丢弃的,也不必用那么多资源来将体细胞维持在生殖细胞那样的完美状态,只要能够帮助生殖细胞完成产生下一代的任务就可以了,因此由体细胞组成的生物体会在生殖过程完成后逐渐衰老和死亡。这种理论又叫做“体细胞可丢弃说”。这些思想现在看来也是有道理的。在生殖过程完成之后,由体细胞组成的身体真的会逐渐衰退直至消失。

他认为既然生殖细胞需要重点照顾,也就是要资源保证,生殖越多,消耗的资源就会越多,用于体细胞维护的资源就会越少,衰老就越快,也就是寿命更短。按照他的这种说法,生殖是以生物体的寿命为代价的。

为了证明他的这个说法,他和另一位科学家一起,收集了过去几百年间2,919名英国皇家妇女生育孩子的数量与她们寿命的资料。根据他们对这些资料的分析,他们得出结论说孩子的数量越多,妇女的寿命越短,符合他们的预期。由于这篇文章是发表在《自然》杂志上的,自1998年发表以来,一直被当作权威文章而被一再引用,作为孩子多的妇女寿命短的证据。

但是当我们去查看这篇文章中的原始数据时,就发现他们的这个结论并不成立。之所以他们能够得出孩子越多寿命越短的结论,是因为他们使用了一种叫做“泊松回归”(Poisson regression)的分析方法,而且已经有人指出,在这里使用这种分析方法并不恰当。生育并不影响寿命,反而使母亲活得更长的结论也得到新近一些研究结果的支持。

反对Kirkwood说法最有力的证据是节食能够延长动物的寿命,从酵母、线虫、果蝇和小鼠都是如此。如果说把资源用来重点照顾生殖细胞是体细胞衰老的原因,减少食物供应,应该使得情形更加恶化,寿命应该更短才是,因为总的资源少了,分配给维护体细胞的资源只会更少,但是实际的情形却是生命延长。线虫的一些突变种的寿命被显著延长,但是这些线虫的繁殖能力却不受影响,说明生长和生殖是可以分开调控的,生殖不一定要以体细胞的衰老为代价。

二 衰老和死亡是一种聪明的自然选择效应

DNA双螺旋的发现者之一,Francis Crick(1916-2004)说,“生物学家都应该记住一个简单的规则,就是演化过程总是比你聪明”。经过几十亿年的演化,衰老仍然是生物界中相当普遍的现象,说明衰老过程为生物的生存和繁衍所必须。把衰老看成无可奈何的“坏事”,是低估了演化过程的强大力量。

根据一些人对达尔文“适者生存”的演化理论的解释,衰老现象本不应该存在。自然选择只会保留那些使身体更健康,生殖能力更强的基因,而不会保留那些对身体不利的基因,因为这些基因的作用会使具有这个基因的个体竞争力变弱。如果一个群体中所有的成员都具有促进衰老的基因,而有些个体由于基因突变而使这些基因失活,那么这个突变体由于身体不会老化,就会拥有更强的竞争优势,最后取代那些具有促进衰老基因的个体。也就是说,自然选择会自动消除那些对身体不利的基因。

但是这个解释有两个问题。一是认为自然选择只对动物个体起作用,而对群体不起作用,所以只会保留对这个个体有利的基因。其实演化对种群的作用更重要,因为没有种群就没有个体,而种群选择就有可能发展出对种群有利,而对部分个体不利的特性来。二是忽略了环境条件的限制。对于动物个体来说,当然是生存能力越强越好,繁殖能力也越强越好。但是要让这样的动物成功生活,必须要有一个前提,就是自然界能够提供的资源是无限的。但是实际的情形却恰恰与此相反,即自然界能够提供的资源是有限的。除了被捕食,疾病和事故,饥荒也是动物种群面对的严重威胁。生存能力极强的动物大量繁殖,早晚会由于超过资源能够提供的极限而自我毁灭。

每种动物也不是单独演化的,而是和环境中的其他物种相互依存,共同演化。捕食者要有足够的被捕食者才能存活,所以不能数量太大。老虎狮子都有自己的“领地”(即限制单位面积中老虎的数量)就说明了这一点。被捕食者的数量不能太多,以免自己由于食物不足而使种群陷入危机,也不能数量太少,以致最后被捕食者全部消灭。是寿命(由衰老控制)和繁殖能力控制着捕食者和被捕食者的相对数量。现在我们看到的动物的寿命和繁殖能力就是在这种相互依存的情况下,长期共同演化所形成的最佳值。任何一方的数量太高或太低都会造成生态系统的崩溃。

德国科学家August Weismann (1834-1914) 是第一个用种群(而不是个体)的演化来解释衰老现象的人。他认为衰老是为种群,而不是个体的利益而演化出来的。种群中年老的个体应该通过特殊的机制死亡,这样他们就不再会与种群中年轻的个体争夺食物和其它资源。在控制寿命的问题上,种群的利益,而不是个体的利益,才是唯一具有重要性的事情。种群中的个体活得长点或者短点并不重要,重要的是个体必须为种群的生存做出贡献。

Weismann学说的核心是群体选择,而不是个体选择,这是理解衰老过程的关键。他的这些想法是在1891年提出的,在128年后的今天仍然是解释衰老现象最好的理论。

按照Weismann的学说,衰老可以有至少以下三个方面的正面作用:

第一是避免种群过度扩张(overpopulation)。由于自然界能够提供的资源有限,每个物种都必须限制个体的数量,否则就会遭遇到饥荒。衰老导致的死亡就是群体限制个体数量的有效方法。

第二去是去除已经完成生殖任务的个体,是把资源让给更年轻的个体。年轻(生育期前和生育期中)的个体负担着继续繁衍物种的任务,代表着种群的未来。让年老的个体通过衰老而死亡,这些个体就不会与年轻的个体争夺食物和其它资源。

第三是使得自然选择过程能够有效发生。自然选择只能通过不断换代来实现,因为只有不断换代,新的个体才能不断产生,给自然选择提供可以选择的对象。换代不仅是产生新的个体,还会通过有性生殖过程中的基因重组增加新个体基因组合的多样性,使得物种能够更好地适应不断变化的环境。

饥荒和传染病是每个物种面临的两个最大的威胁,而过度拥挤(因而是高密度),基因组合又单调的群体不仅容易遭遇饥荒,在传染病面前受到的威胁也最大,因为高密度有利于疾病传播,而基因组合单调又使得群体中缺乏能够抵抗疾病的个体。衰老过程使得物种能够更有效地应对这两个威胁。

因此,与对衰老过程的负面看法相反,衰老其实在生物的生存和演化中扮演着正面的,必不可少的作用,这是衰老过程不但不被演化过程所消灭,反而在生物中普遍存在的原因。年老的个体必须为群体的利益牺牲自己,也就是通过衰老过程让自己或快或慢地死亡。

不过Weismann的这些想法并不被许多人接受,主要理由还是自然选择只能对生物个体起作用,对群体要么不起作用,要么作用很弱。既然自然选择只对个体起作用,它又怎么可能发展出对个体不利的功能来呢?

三 6星期与60年,衰老的快与慢

如果我们比较各种生物的死亡方式,就可以发现有些生物能够在生命的特定阶段(通常是完成繁殖任务之后)快速结束自己的生命,但是多数生物采取的是慢性衰老的方式,即让肌体的功能在一个相对长的时期内逐渐降低,最后才导致死亡。

由于生物之间寿命差别极大,“快速”和“慢性”都不能用时间的绝对长度来定义,而是要看衰老过程的时间(一般是从生殖完成到死亡的时间)和该生物总的寿命比较的相对值。例如线虫在生殖过程完成后还能够活大约两个星期,是很短的,但是线虫的寿命总共也只有大约19天,所以线虫有一个相对漫长的衰老期,占寿命的60-70%。人的寿命大约是80岁,而衰老期大约是40年,比线虫两个星期的衰老期长得多,也属于慢性衰老,但是衰老期占总寿命的比例还不如线虫,在50%左右。

蝉从卵孵化、幼虫入土、出土、上树、蜕变、交配、产卵,死亡,总寿命可以长达17年,但是从交配、产卵到死亡,大约只有6个星期,虽然比线虫两个星期的衰老期长得多,但只占总寿命的1%,所以属于快速衰老。

许多一生只繁殖一次的生物都用快速衰老的方式在生殖完成后很快结束自己的生命,例如昆虫中的家蚕、蜉蝣、软体动物中的章鱼、哺乳动物中的澳大利亚袋鼬。

这些生物的衰老过程都非常迅速。例如鲑鱼(salmon)的寿命约3-4年,但是洄游到繁殖地产卵后就会在几个星期内死亡。整个衰老过程就像一部快速放映的电影,皮肤变薄,肌肉萎缩,骨质疏松,肿瘤发生,所有这些和人类衰老非常相似的现象在几个星期内就完成了。

鲑鱼洄游

这些快速的衰老过程常常是由体内特殊的自杀机制引起的,因此和单细胞生物的自杀情形相似。例如雌章鱼在产卵后就停止进食,但是继续照顾卵,到卵孵化后就会死亡。如果把产卵后不久的雌章鱼两眼之间的一对腺体摘除,雌章鱼又开始进食,体重增加,而且可以比对照组(没有摘除腺体的雌章鱼)多活9个月之久。因此是内分泌腺分泌物质的变化促使雌章鱼衰老和死亡。

这些事实说明,“常规”的破坏机制,例如活性氧、端粒缩短、电离辐射引起的DNA的突变等,对于生物的快速衰老已经不够了,还必须启动额外的机制来大大加速衰老过程。而对于那些慢性衰老的生物来讲,活性氧和DNA突变等因素就可以在长时期中逐渐实现它们的破坏作用,所需要的只是把修复机制“放松”到一定程度,使得生物按照需要的速率衰老。由于多数动物,包括我们人类,是通过慢性衰老死亡的,我们在这篇文章中讨论的,也主要是慢性衰老。

慢性衰老不涉及急性自杀,衰老过程占总寿命的相当部分,所以对于慢性衰老的生物来讲,寿命也可以用来作为衰老速度的一个指标。

既然生育期之后的生物个体已经不再能够产生下一代,为什么许多生物不像上面谈到的生物一样,在完成生育任务后立即死亡,而要有一个漫长的衰老期呢?这可能是因为生育期后的个体对群体仍然能够发挥一些正面的作用。

多数生物采取慢性衰老,而不是在生殖任务完成后急性自杀的方式,说明保留生殖期后的个体一段时间,对于群体的生存仍然有好处。

一是照顾下一代或者第三代。哺乳动物出生时都不能独立生活,而要靠母亲喂奶,在断奶后也还需要父母或祖父母的照顾。在人类中,爷爷奶奶照顾孙儿孙女是很常见的。鸟类在幼鸟孵化出来以后,也有喂食阶段。企鹅还有“幼儿园”,由企鹅群体,而不只是幼鸟的父母,来照顾孩子。在鱼类和两栖类中,也有父母照顾后代的情形,例如罗非鱼让幼鱼在有危险时躲入自己口中;一些青蛙和蟾蜍会给蝌蚪提供食物和开辟水道。

二是传授知识和经验。人类自不用说,灵长类动物的孩子都要从父母那里学习生活经验。就连蚂蚁都有传授经验的能力,在找寻新窝时,有经验的蚂蚁会带领没有经验的蚂蚁。

三是增大群体的防卫能力。在细菌中,老年个体在一定程度的存在可以帮助群体抵御其它物种的细菌进入这个群体的范围。猎豹父母的存在使得刚长成的猎豹免受其它捕猎者,例如土狼(hyena)的威胁。

下一个问题是,慢性衰老是一个损伤随机积累的过程,还是由程序控制的?

四 寿就是命,衰老与死亡的程序

衰老过程是程序决定的,即由生物内部的“时间表”控制的,还是生物没有这样一个“时间表”,衰老是损伤随机积累的结果,即非程序控制的,这是衰老研究中两派激烈争论的问题。

两派的人都同意,生长发育的速度和性成熟的时间是由程序控制的。

但是在衰老问题上,两派的意见就不同了。反对衰老是程序控制的人认为,生长发育和性成熟对生物是正面的发展,自然可以由程序控制;而衰老对个体的作用是负面的,由于自然选择只能对个体起作用,因此个体不可能发展出并且保持对自己不利的程序,衰老只能是身体受到的随机发生的损害逐渐积累的结果,也就是没有一个控制程序。

但是随机损害积累的理论无法解释为何不同的物种之间,衰老的速度(对于缓慢衰老的生物反映在寿命上)差异如此之大。从线虫的19天到北极蛤有记录的507年,动物的寿命可以相差1万倍!

动物的形式虽然千差万别,但是在分子结构上却是高度一致的,如果动物衰老主要是由活性氧引起的,又如何解释生物衰老的快慢有如此大的差别,生物的寿命能够如此不同?

主张衰老过程是程序控制的人则认为,自然选择可以对群体起作用,因而可以发展出对群体有利,而对部分个体(主要是生殖以后的个体)不利的特性来。衰老速度在不同物种之间的巨大差异和在同一物种中的高度一致性,正是程序控制衰老速度的证据。之所以不同生物衰老的速度不同,是因为每种生物衰老的速度最适合该物种的生存。

一个有趣的例子是非洲一类美丽的小鱼,在分类学上都属于鱂属,但是不同种鱂鱼的寿命可以相差5倍之多。生活在津巴布韦的鱂鱼,由于那里只有短暂的雨季,雨季过后水塘很快干涸,这种鱂鱼的寿命只有3个月,相当于雨季的长度。莫桑比克的雨季比津巴布韦长4倍,那里的鱂鱼就可以活9个月。另一鱂鱼生活在有两个雨季的地方,寿命可以长达16个月。

鱂鱼

如果衰老是随机损伤积累的结果,如何解释这三种同一属的鱼(因此身体结构极为相似)寿命差别如此之大,而且“碰巧”与雨季的长度符合?更合理的解释是鱂鱼的衰老速度是程序控制的,是雨季的长短选择了程序控制的寿命正好符合这个长短的鱼类。程序控制的寿命过长或过短,与雨季的长度不匹配,就会被自然选择所淘汰,所以我们现在看到的都是寿命与雨季长短匹配的物种。将这三种鱂鱼在人工条件下饲养,外部条件相同,它们寿命的差别仍然存在,说明体内控制衰老的程序仍然在起作用。

将生命缩短,看似对个体不利,但正是这种在寿命上的牺牲换取了物种的生存。非洲鱂鱼的例子也再次证明自然选择可以对群体起作用,而且是最重要的作用。

五 四种机制,让你年轻让你衰老

如果衰老过程是程序控制的,这个程序是什么?生物的生理功能是由蛋白质分子执行的,在什么时候生产什么蛋白,生产多少,就是生物控制生理功能,包括维持和修复功能的主要手段。因此想要了解控制衰老的程序,就需要了解控制蛋白质生产的基因。

在过去的几十年中,由于分子生物学技术的迅猛进展,科学家们已经可以根据需要改变单个基因的表达状况,即进行“精准打击”。这样就可以观察单个基因表达状况的改变(提高或降低)对衰老过程的影响。

“饱和突变”和“精准打击”的方法都很有效,科学家们也用这些方法得到了大量的研究结果,揭示了与衰老过程有关的基因和蛋白质组成的信息通路。

胰岛素/类胰岛素生长因子通路

在哺乳动物如小鼠和人类中,对应DAF-2蛋白的是胰岛素受体。不过与线虫只有一个胰

因此,胰岛素/IGF-1信号通路是控制动物寿命的重要信号通路,小型狗比大型狗活得长,血液中IGF-1的浓度也比较低。类似的情形在小鼠中也被发现,例如在2009年,美国的Jackson实验室(TheJackson Laboratory)比较了31个品种小鼠的寿命和血液中IGF-1的水平。这些小鼠的寿命可以相差近4倍(从251天到964天),而寿命的长度与血液中IGF-1的浓度成反比关系,寿命最长的小鼠,血液中IGF-1的浓度也最低。IGF-1受体失活的小鼠也比正常小鼠活得长。

在人类中,由于不可能进行基因敲除的实验,这些基因对寿命的影响不能通过基因工程进行研究,但是可以通过对基因多型性的比较来观察这条信号通路对人寿命的影响。

例如在2003年,意大利科学家研究了496位意大利人人(364位女性和132位男性)中胰岛素/IGF-1信号通路中基因多型性与寿命的关系。IGF-1受体(IGF-1R)的基因中,在密码子第1013位上有一个G/A的多型性,即有些人在这个位置是G,另一些人是A。由于每个人都有两份IGF-1R基因,所以有GG、GA、AA三种组合。研究表明,在长寿的人中,AA组合的比例比在一般人群中多,血液中IGF-1浓度最低;而GG组合在寿命较短的人中比例较高,血液中IGF-1浓度最高。

其他的医学研究也证明,胰岛素/IGF-1信号通路中三个关键的蛋白(IGF-1受体、PI3KCB、FOXO3A)的多型性都与人的寿命有关,证明这条通路也是影响人寿命的信号传递链。

在脊椎动物中,还有一个因素与胰岛素/IGF-1信号通路密切有关,从而与动物的寿命有关,这就是生长激素。

生长激素与寿命的关系

脊椎动物的身体构造比无脊椎动物复杂,原来促进生长的基因(如胰岛素和胰岛素样生长激素IGF-1)已经不够用了,于是脊椎动物还发展出了生长激素(growth hormone,GH),专管动物的生长。生长激素是由脑垂体前叶分泌的一种多肽激素,能够加速合成反应,促使细胞增殖和身体的生长,因此成年后的身高也与生长时期生长激素的水平密切相关。

生长激素除了直接促进生长外,还能够刺激肝脏生产IGF-1,因此和胰岛素/IGF-1信号通路相联系,也就与寿命相有关。血液中生长激素水平高也意味着血液中IGF-1浓度也会比较高,对动物的寿命有负面的影响。

人的高度与寿命的关系比较复杂,因为人类的生存环境与动物相比已经有很大的不同,影响寿命的因素也很多,因此早期关于身高和寿命关系的研究常常得出互相矛盾的结论。在过去的几十年中,由于营养状况的不断改善,人的身高也不断增加,年轻一代普遍比父母长得高,因此要研究身高与寿命的关系,不能用纵向比较的方式,而要横向比较同一时代,各种条件彼此相似的人。近年来的大量研究表明,人的身高,和其它动物一样,也与寿命呈负相关的关系,即身体越高,由于各种原因导致的死亡率越高,寿命越短。

北欧国家的人普遍比南欧国家的人高。每百万人中百岁以上老人的数量,在身高比较低的国家中为75人,在身高较高的国家中只有48人。据美国加州圣地亚哥(San Diego)已经死亡的退伍军人的资料,身高等于或低于175.3厘米的人比身高等于或高于182.9厘米的人多活7.46年。

对2,600位芬兰运动员的研究表明,滑雪运动员的平均身高比篮球运动员低6英吋(即大约低15厘米),平均寿命也比篮球运动员长近6岁。即使同为篮球运动员,在一项对美国篮球运动员的调查中,身高在最低的5%中的运动员平均寿命为75.1岁,而身高在最高的5%中运动员,平均寿命为56.6岁。

生长激素是从“上游”影响胰岛素/类胰岛素信号传递链的。除了生长激素,胰岛素/IGF-1信号传递链还在“中下游”与另一条与寿命有关的信息传递链相连,这就是雷帕霉素靶蛋白(mTOR)信息通路。

雷帕霉素靶蛋白信息通路

这条信息通路不是通过基因突变发现的,而是对一种免疫抑制剂的研究而被揭示的。

青霉素是真菌分泌出来对抗细菌的物质,而雷帕霉素相反,是细菌分泌出来对抗真菌的物质。所以在生物之间的斗争中,没有高低之分,不是更高等的生物就一定能够战胜更低等的生物。

除了能够抑制真菌生长,雷帕霉素还能够抑制动物的免疫功能和抑制癌细胞生长,并且被美国食物和药品管理局(FDA)批准用于抑制肾移植后的排斥反应。

因此,胰岛素/IGF-1信息通路和mTOR信息通路是两条并行的信号传递链,生理效果也彼此相似,都是在营养物质丰富时增加生物的合成作用,促进动物的生长发育,同时抑制动物抵抗逆境的能力,使动物的寿命相对较短,增加生物更新换代的速度。

但是mTOR路线的活化需要从胰岛素/IGF-1信息通路得到信号,否则靠自身对食物状况的感知还不足以启动。由于这两条信息通路都能够促使动物生长,同时又使动物的抵抗力降低,寿命较短,降低这两条通路的活性都能够延长动物的寿命。

这两条通路都是在食物充足的情况下被活化的,都缩短动物的寿命。有没有直接感知食物不足,从而使动物在食物不足的情况下做出反应,同时延长动物的寿命的信息通路呢?

1935年,美国康奈尔大学(Cornell University)的Clive Maine McCay(1898—1967)发现,对大鼠限食,能够使大鼠的寿命几乎加倍。后来的研究发现,减少动物的进食量,但又不到营养不良的程度,可以延长各种生物的寿命,包括酵母、线虫、果蝇、哺乳动物(大鼠和小鼠),甚至灵长类动物(恒河猴)。这就是影响寿命的AMPK信息通路和Sirtuin信息通路。

AMPKSirtuin信息通路

当食物不足时,动物细胞内合成高能分子ATP(三磷酸腺苷)的“燃料”缺乏,使ATP的合成减少。这会被一种蛋白激酶(AMPK)所感知。AMPK会告诉细胞:“能量不足!”,促使细胞发生一系列的变化,帮助细胞度过逆境。AMPK在各种生物中广泛存在,从酵母到人,其结构高度一致,是调节能量代谢状况的重要蛋白。

由于AMPK有和胰岛素/IGF-1信息通路和mTOR信息通路相反的作用,而且还可以抑制这两条使动物寿命缩短的信息通路,而和延长动物寿命的FOXO蛋白的功能相似,因此提高动物中AMPK的活性可以延长动物的寿命。AMPK还有一个重要功能,就是能够活化另一个“延寿蛋白”Sirtuin,进一步增强自己的作用。

当食物不足时,动物的细胞内还会发生另一个变化,就是氧化程度增加。

细胞中的一种酶sir2蛋白能够感知细胞的能量状态。增加酵母中这个酶基因的拷贝数可以延长酵母的寿命30%左右,而敲除这个基因会使酵母的寿命缩短。所有的生物都含有产生这种酶的基因,称为Sirtuin,简称SIRT。

SIRT蛋白还能够活化AMPK,增加FOXO蛋白的活性,同时抑制mTORC1信息通路,进一步增强细胞在逆境下的生存能力。

白藜芦醇是存在于红酒(实为酿红酒的葡萄,特别是葡萄皮)、蓝莓和花生中的一种化合物,能够活化SIRT1和AMPK,因而能够在不限食的情况下模拟限食的效果,延长酵母、线虫、和果蝇的寿命。

六 顺境,逆境:信息通道的启示

以上的研究结果表明,酵母和动物中存在四条与寿命有关的信息通路。其中胰岛素/IGF-1信息通路和mTOR信息通路在食物充足时增加合成反应,促使这些生物加快生长繁殖,同时降低这些生物的抵抗力,缩短寿命,以加快这些生物的更新换代。这两条通路相互联系,相互促进,共同完成生物对顺境的反应。

另两条通路,即AMPK信息通路和Sirtuin信息通路,则感知食物不足等逆境,增加ATP的合成和降低消耗,同时增加这些生物抵抗逆境的能力,在保留生育能力的情况下延长寿命,使这些生物有更大的机会“拖”过逆境。这两条通路也相互联系,相互促进,共同完成动物对逆境的反应。

这两大类信息通路不仅作用相反,它们还相互抑制,以免在细胞内造成混乱。

动物在顺境时寿命缩短,在逆境时寿命延长,似乎和人们直觉中的“常理”相反:“条件好”时动物应该活得更长啊!但是正如Sir2基因的发现者,Leonard Guarente(1952- )所说的:“在资源缺乏时能够延缓衰老和生殖,同时在食物重新出现时仍然能够生殖的生物,就比那些不能这样做的邻居有更大的优越性”。

这是逆境导致寿命延长的根本原因。顺境时“抓紧时间”生长繁殖,加快改朝换代(即缩短个体的寿命)以增加自然选择的效率,逆境时“以拖待变”,反而对物种的生存更加有利。

这些信息通路的工作方式告诉我们:只要程度不太严重,逆境可以延长寿命。逆境不仅指缺食,还包括缺氧、高温、低温、电离辐射、活性氧等。生物的发展从来是在逆境频繁的环境中进行的,因而早已发展出了在逆境中修复各种原因造成的损伤,维持自己的健康状态和繁殖能力的机制。这些环境中的有害因素,如果不超过生物能够承受的程度,能够被生物感知并激活生物的维持和修复机制,反而使生物活得更健康。这种观点和生物只能被动地承受外界(如电离辐射)和内部(如活性氧)有害因素造成损伤的说法相反,被称为“小冲击理论”(Hormesis)。例如体育锻炼会增加体内活性氧的生成,还会在肌肉中造成缺氧,但是却增进人们的健康;低强度的电离辐射也对人的健康有好处。食物缺乏导致的抵抗力增强和寿命延长,只是生物这种机制工作的又一个例子。

相反,过度“完美”的环境反而会缩短寿命。在物质匮乏的年代,“饥寒交迫”是对苦日子的形容,而“丰衣足食”则是人们对好生活的向往。但是到了经济状况大幅改善,物质供应极为丰富,品尝“美食”已经成为日常生活一部分的年代,营养过剩却成为激活胰岛素/IGF-1信息通路和mTOR的信息通路,抑制MAPK信息通路和Sirtuin通路的罪魁祸首,使得人们的抵抗力下降,糖尿病、心血管病、癌症等疾病的发生率增加。之所以近年来许多国家人民的寿命是在不断增加而不是在缩短,主要是因为卫生条件的改善、抗生素的发现和使用、免疫接种、新的药物、以及更好的诊断和治疗手段,而不是因为吃得比过去多。是人类对自身环境的这些改善部分掩盖了营养过剩所带来的负面效果,使一些人误以为只要不撑坏肚子,多吃几口没有坏处,甚至觉得丰富的营养对健康有好处。如果在大量的美食面前,能够控制自己的口欲,与年龄有关的疾病还会更少,我们的寿命还会更长。

七 何为最佳寿命

影响动物寿命基因的发现,也使人们对寿命延长的前景更加乐观。在FOXO、AMPK、SIRT1等“长寿蛋白”的基因被发现后,就有人预言人类不久就可以活到500岁,甚至完全避免衰老,真正做到“长生不老”。

但是如果我们放宽视野,不限于个别动物,而是从整个动物界的寿命来看,这些信息通路就只能“微调”动物的寿命,在一般情况下达不到使寿命加倍的效果。也就是说,这些信息通路只能围绕各种动物的“固有寿命”进行调节,在顺境时小幅缩短动物的寿命,在逆境时小幅延长动物的寿命,但是不能大幅度地,根本地改变动物的寿命。即使将线虫的寿命延长10倍(到约200天),也不能将线虫的寿命延长到小鼠的寿命(2-3年),也无法将小鼠的寿命延长到人的寿命(80岁左右)。

如前所述,动物的寿命是在整个生态系统的演化过程中彼此制约,共同形成的,是保持生态系统稳定,从而使动物物种能够生存的“最佳寿命”(存在即合理?根据环境状况对寿命进行的调整也不能大幅度地偏离这个最佳值,否则就有可能导致生态系统的崩溃。如果把小鼠的寿命调到和人一样长,性成熟期也相应地推迟到14-15岁,以这样的速度繁殖的小鼠在野外恐怕在能够繁殖之前,就已经被捕猎者吃光了。因此,我们谈到的四条与寿命有关的信息通路,也只能对寿命进行“微调”,即只具有“近程控制”的能力,想利用这些通路把人的寿命延长到500岁,甚至长生不老,是不可能的。

但四条通路不能解释为什么不同动物衰老期的长度会如此不同。

因此,除了我们谈到的这几条信息通路,动物一定还有控制自己特有寿命的机制,即“远程控制”的机制。人们目前研究的,包括上面所说的四条信息通路,其实都是近程控制的机制,而对长程控制机制的研究还很少。

例如就没有人去研究为什么线虫3-4天就可以产生精子,衰老期只有两个星期;而人需要13-14年才能产生精子,衰老期50年或更长。如果我们真的想活到500岁,甚至做到长生不老,就必须了解动物的长程控制机制。

动物的性成熟期和整个寿命是呈正相关的关系的,即性成熟期越晚,生长发育的时间越长,动物的寿命也越长。例如线虫的性成熟期是大约3.5天,寿命大约19天;小鼠的性成熟期3-6个星期,寿命2-3年;狗的性成熟期是1年左右,寿命是10-15年,人的性成熟期是12-13年,寿命大约是80岁,即动物的寿命大约是性成熟期的5-10倍。既然动物的有性生殖都是通过精子和卵子进行的,所涉及的生理过程高度相似,决定线虫性成熟的3.5天到人的12-13年的,一定是储存在DNA中的程序,也就是说,动物的生长发育期是程序控制的,这一点几乎所有的人都同意。

但是在衰老期长度的控制上,即从性成熟到死亡阶段的控制上,人们的意见就不一致了。如本文开始部分所提及的,许多人把衰老看作是随机损伤不断积累的结果,否认衰老过程也是由程序控制的,理由是自然选择不能使个体发展出对自己不利的特性来。但是单细胞生物为群体的利益自杀的机制证明自然选择对群体也起作用,衰老是部分个体为群体的生存而牺牲自己所采取的方法。不同动物衰老期的巨大差异和同种动物衰老期的高度一致说明衰老过程也是程序控制的。

既然动物衰老的机制都彼此相似,都是通过活性氧、电离辐射、组织交联、端粒缩短等因素造成的组织损伤,决定衰老期长度的方式就是对维持和修复能力的调控。如果把各种因素造成动物损伤的作用比作冲垮生命的“洪水”,减少这些损伤和修复已经造成的损伤的能力就是动物控制洪水的“闸门”。“闸门”开得大,即降低维护和修复机制的效率,“洪水”就会“泛滥”,破坏因素就能够更快地发挥作用,动物的寿命就短;“闸门”关得紧,大部分的损伤能够被修复,“洪水”就变为“涓涓细流”,破坏因素的作用就漫,动物的寿命就长。破坏因素只是衰老过程的执行者,而不是原因。原因是根据需要决定的寿命,而这个寿命又决定“闸门”打开的程度。

但这种“开闸”的行动只发生于体细胞中,在生殖细胞中永不发生。换句话说,衰老过程只在体细胞中被激活,目的是让自然的破坏因素发挥作用,按照最佳寿命决定的时间表让完成生育任务的个体死亡。而生殖细胞担负着繁殖后代的使命,不容许任何损伤传递给下一代,因此“闸门”完全不会打开。

既然动物的生长发育过程和衰老过程都是由程序长程控制的,这种程序是什么呢?在目前,由于研究结果有限,我们只能做一些猜测。

既然基因相同或相似,决定动物生长发育期和衰老期长短的,可能就是通过两个层次的控制来实现的。

第一个层次是DNA序列的差异,特别是基因启动子上序列的差异。动物的各种生理功能主要是由蛋白质分子来执行的,包括控制生长发育过程和控制“闸门”开启程度的蛋白质。这些蛋白质在不同动物中可能彼此相似,不同的是这些蛋白表达的时间、强度、和持续时间。在动物寿命形成的过程中,启动子的序列会逐渐调整,最后形成控制动物寿命长短所需的DNA序列。

第二个层次是基因的“外遗传修饰”(国内也译为“表观遗传”)。在动物细胞中,DNA不是“裸露”的,而是结合有各种蛋白质,这些蛋白质使DNA链被“包裹”到更紧密的结构中,影响转录因子结合在启动子上,也可以影响基因的表达。

这些修饰不改变DNA分子中核苷酸的序列,却影响基因表达的程度和时间,由此决定动物寿命的“钟表”走动的快慢,也决定“闸门”开启的大小,最终影响动物的寿命。

随着科学技术的进步,也许有一天我们能够通过DNA序列的改变来大幅调节人类的寿命。问题是,我们需要这样做吗?

八 我们能够活500年吗?需要活500年吗?

人类已经脱离了动物的生存环境,创造了自己的生存环境,所承受的演化压力也和我们的祖先不同。现在人类的寿命已经明显高于其他灵长类动物,也许就是人类演化,特别是智力的发展带来的自身生活条件的变化的结果。

特别是到了现代,人类创造出来的物质条件更是其他动物完全无法比拟的。多数人已经生活在自己创造的环境(如大城市)中,和我们的祖先曾经生活过的环境有极大的差异。在这种情况下,人类摆脱过去在自然界中演化的压力,根据需要调节自己的寿命,在理论上已经有可能。

但是人类仍然生活在地球上,仍然受到地球资源的限制。城市也不能独立存在,城市外广大的地区仍然为大自然。在这样的情况下,什么是人类新的最佳寿命?

是一些人希望的500岁吗?如果是那样,人类就需要把生育年龄延后到250岁左右。如果人类仍然在20岁时就开始生殖,生下来的人又都活500岁,就不可避免地会造成人口数量的不断增长,最后超出地球能够供给的极限。想象一下在几百年中每天都看见同样的面孔,在250岁之前都不能恋爱结婚的日子,真的是我们想要的吗?

至少在目前,通过改变DNA的序列而大幅度改变人寿命还是一个可望而不可即的目标。这样做相当于是在DNA的水平上对人类的寿命重新进行“编程”,风险是极大的。更为现实的是利用我们已经掌握的对动物,包括人类的寿命进行微调的信息传递链的知识,在不影响生理功能的条件下,增强AMPK和Sirtuin信息通路的活性,下调胰岛素/IGF-1和mTOR信息通路的活性,增强身体对逆境的抵抗能力,降低各种老年病的发病率。

    以上就是本篇文章【丁克寿命短?关于衰老与死亡的种种谜解】的全部内容了,欢迎阅览 ! 文章地址:http://www.tpjde.com/quote/1371.html 
     行业      资讯      企业新闻      行情      企业黄页      同类资讯      网站地图      返回首页 推平第移动站 http://mip.tpjde.com/ , 查看更多